Low-hanging fruit: interactive tables for collaborative learning

Jochen “Jeff” Rick, Computing Dept. Notes from Tech Coffee Morning, 8 April 2009.  Background from the shareIT project, part of Yvonne Rogers’ pervasive interaction group.

Low-hanging fruit – is the stuff that this is a big obvious win for.

We tend to think of two sorts of educational technology: 1. Personal ed tech, with one device per person – desktops, laptops, handhelds, mobiles etc. You can share/work around.  2. Whole-class educational technology – projectors, smartboards. Smartboards are almost ubiquitous in UK classrooms.

New class, including: Interactive tabletops. Three well-known examples: Microsoft Surface; SMART table (£5000) – small, aimed at kids, software a bit lagging; DiamondTouch table.  Work in different ways: Surface shines IR light upwards, then a camera looking at the IR coming down, so can see your fingertips and outline of objects. SMART table is FTIR – internal reflection – like the CNN interactive display, Jeff thingy on TED talk.  DiamondTouch is ?conductive – you stand on a pad and it senses finger location via direct conductance.

Electronic whiteboards “reinforce a transmission style of whole class teaching” – Moss et al 2007. But tabletop stuff can’t be used that way. (Unless you also connect it to a projector, as we have in this talk!)

RQs – looking at: What theories resonate with interactive tabletop? How do learners collaborate? How can the task and interface enable, encourage and enforce collaboration?

Three technologies to demo: OurSpace: Marshall et al (2009) Proc CHI 2009. Rick et al in Proc IDC ’09. Harris et al (2009). DigiTile – Rick & Rogers (2009). WordCat – no papers yet.

OurSpace – seating exercise. Aerial view of classroom, drag around tables and students.  Demo – three people doing the task, stood on each pad.  Students are flagged as friendship groups (colour), glasses (can’t see), speech bubble (talkative).  Did prototype studies where the kids laid out their own room, and talked to them about the criteria that were important to them about space allocation. Now use fake kids but real room and desk number configuration. Can also do route-drawing with your finger. Did lots of empirical tests with Year 3-4 (age 7-9), multi-touch versus single touch, kids stood at three sides of rectangle or side-by-side.  Collaborative design task, no right answer.  With single-touch, turn-taking talk goes way up compared to multi-touch, at the expense of task-focused talk – in percentage terms, but actually the extra talk on turn-taking is extra, not replacement.  Equity – physical equity – not terribly affected, except boy groups more equitable with multi-touch, but girl groups more when single-touch. Most other research shows big difference here, but this doesn’t show it. Because in this case the handover is very quick and easy, but in others (e.g. handing over smart pen) it’s harder and requires explicit release and handover time. In multi-touch mode you can do your own thing and not pay attention to the others, but single-touch you have to collaborate – you might as well pay attention to what’s going on if you’re not driving.

DigiTile – tiling program. Six colour choices, half/whole tiles. DigiQuilt was the base software this is based on (for single user). Task is to generate a given picture. Or harder challenge – generate a tiling to give a certain mix of colours. One classroom study done, another in progress. Looked with shared or split palette (half the colours to each participant). Doesn’t make much difference – perhaps because kids don’t mind reaching in to each other’s space. Generally they collaborate really well, not much over-dominance, largely equitable. Possibly because easy to undermine a strategy if you’re not included?  Pre/post test shows significant difference on fractions knowledge compared to controls for a 30min session. (Cool!)

WordCat – word categorisation. Sort words in to two-by-two grid, need to have something in common on horizontals and verticals. Each have a word, and both have to put it in the same place to get it to stay there.  Both participants have to do it the same before you get to see the next word.

Task overview: OurSpace – enables collaboration – in multitouch mode, participants could largely work independently, but in single touch mode, more coordination was required. DigitTile encourages collaboration – on more mathematical challenges, participants learned quickly that they had to work together or they would just step on each other’s toes. WordCat enforces collaboration – it cannot be completed without a partner. Small interface changes can adjust how strictly collaboration is enforced. (Or, can bully/persuade the other participant to just go through the motions.)

Interesting questions of definitions – collaboration, cooperation, and so on.

Advertisements

Author: dougclow

Academic in the Institute of Educational Technology, the Open University, UK. Interested in technology-enhanced learning and learning analytics.